If you're seeing this message, it means we're having trouble loading external resources on our website.

If you're behind a web filter, please make sure that the domains *.kastatic.org and *.kasandbox.org are unblocked.

Main content

Intro to determinant notation and computation

Matrix determinants are easy to define and hard to understand. So let's start with defining them and introducing related notation. In other videos we will learn what they mean and how to use them. Created by Sal Khan.

Want to join the conversation?

  • aqualine ultimate style avatar for user Simum
    But what is the determinant?
    (3 votes)
    Default Khan Academy avatar avatar for user
  • piceratops ultimate style avatar for user ANB
    Can you only find matrix determinants in 2x2 matrices?

    If not, then what method would you use to find the matrix determinant in matrices with different dimensions?
    (2 votes)
    Default Khan Academy avatar avatar for user
    • piceratops ultimate style avatar for user 24gargaa
      It is actually possible to find determinants in other matrices (not 2 by 2). For example, if you wanted to find the determinant of a 1 by 1 matrix, the answer would just be that same number. However, if you were to find a matrix in the form of 2 by 3, 3 by 5, etc..., it would be impossible to find the determinant. As long as long as you are looking at a matrix in the form of x by x, where both values of x are equivalent, it is possible to find the determinant. However, from matrix to matrix in that form, finding the determinant varies.
      (3 votes)
  • leafers seed style avatar for user Tom Peled
    How do you calculate the determinant of a matrix bigger than 2x2?
    (1 vote)
    Default Khan Academy avatar avatar for user
    • duskpin ultimate style avatar for user TotallyNotAFurryÒwÓ
      To compute the determinant of a matrix larger than 2x2, you can use a process called expansion by minors or cofactor expansion. Here are the general steps:

      Choose any row or column of the matrix.
      For each element in that row or column, compute its corresponding minor, which is the determinant of the submatrix obtained by deleting the row and column that the element is in.
      For each element in that row or column, multiply it by its corresponding minor and its sign, which is positive or negative depending on its position in the matrix. Specifically, the sign of an element in row i and column j is (-1)^(i+j).
      Sum up all the products obtained in step 3 to get the determinant of the original matrix.
      This process may look daunting for larger matrices, but it can be simplified by choosing a row or column that has many zeros or that has a repeated pattern. Additionally, there are some properties of determinants, such as linearity and multiplicativity, that can make the computation easier in some cases.
      (2 votes)
  • leaf green style avatar for user 石乐志大师
    Could anyone tell me why we calculate determinants diagonally? Is there a reason, I didn't see Sal talks about it?
    (1 vote)
    Default Khan Academy avatar avatar for user

Video transcript

- [Instructor] In this video, we're gonna talk about something called determinants of matrices. So I'll start just telling you the notation and how do you compute it. And then we'll think about ways that you can interpret it. So let's give ourselves a two by two matrix here. So, and actually, I'll give it in general terms. So let's say that this top-left term here is A, and then this one here is B the top-right. The bottom-left is C, and then let's call this bottom-right D. And I'm gonna do that in a different color. So this is D right over here. the determinant of this matrix. And actually, let me just call this matrix. Let's say that this is matrix A. So there's a bunch of ways to call the determinant, or have the notation for the determinant. We could write it like this. We could have these little, it looks like absolute value signs, but it really means determinant when you apply it to a matrix. So the determinant of matrix A. You can write it that way. You could write it this way, the determinant of matrix A. You could write it that way. Or you could write it this way, where you put these lines that look like big absolute value signs instead of the brackets when you describe the numbers. So you could also write it this way. And I haven't explained what determinant is or even how to compute it yet. I'm just talking about the notation of how you even talk about the determinant of a matrix. So you can also write it this way, just rewrite the whole matrix with those vertical bars next to it. This is defined as, and we'll see how it's useful in the future, the top-left time's the bottom-right. So A times D minus the top-right times the bottom-left. BC. So another way to think about it, it is just these two, the product of these two minus, so that's those two right over there, minus the product of these two right over here. So let's just first, before we start to interpret this, get a little practice, just computing a determinant. So let me give you a matrix. So let's say I have the matrix one, negative two, three, and five. Pause this video and see if you can compute the determinant of this matrix. Let's call this matrix B. I want you to figure out the determinant of matrix B. What is this going to be equal to? All right, now let's do this together. So you're going to have the product of these two numbers. So we have one times five minus the product of these two numbers, which is three times negative two. And that of course, is going to be equal to one times five is five, three times negative two is negative six. But we're subtracting a negative six. Five minus negative six is the same thing as five plus six which is going to be equal to 11. Now that we know how to compute a determinant, in a future video, I will give you an interesting interpretation of the determinant.